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Abstract: Engineering optimization problems usually have several conflicting objectives, such that no single 

solution can be considered optimum with respect to all objectives. In recent years, many efforts have focused 

on hybrid metaheuristic approaches for their robustness and efficiency to solve the above-mentioned multi-

objective optimization problems (MOPs). This paper proposes a novel hybrid algorithm with the integration of 

particle swarm optimization (PSO) and bio-inspired computational intelligence extremal optimization (EO) for 

constrained engineering design, which combines the superior functionalities of PSO for search efficency and 

extremal dynamics oriented EO for global search capability. The performance of proposed PSO-EO algorithm 

is further tested on several benchmark MOPs in comparison with reported results. The simulations show that 

the PSO-EO is effective in solving MOPs, could result in faster convergence and better spread. 

 

Key-Words: Multi-objective optimization, Evolutionary algorithm, Particle swarm optimization, Extremal 
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1 Introduction 
Optimization problems with two or more objectives 

are very common in engineering and many other 

disciplines, such as product and process design, 

finance, aircraft design, the oil and gas industry, 

automobile design, or wherever optimal decisions 

need to be taken in the presence of trade-offs among 

several conflicting objectives. The process of 

optimizing a collection of objective functions 

systematically and simultaneously is called multi-

objective optimization. The solution of such 

problems is difficult due to the large number of 

conflict objectives and the rough landscape with 

multiple local minima. The Operations Research 

community has developed various mathematical 

programming techniques to solve MOPs since the 

1950s. However, there are several limitations for 

traditional mathematical programming techniques 

when tackling MOPs, for example, many of them 

failed when the shape of the Pareto front is concave 

or disconnected. Also, for most of them, only one 

solution can be detected per optimization run [1]. 

The inherent difficulty and the heavy computational 

cost of mathematical programming techniques 

promote the development of more efficient and 

effective methods.  

Evolutionary algorithms (EAs) are suitable for 

MOPs due to the capability of searching for multiple 

Pareto optimal solutions synchronously and 

performing better global exploration of the search 

space [2-3]. Furthermore, EAs can be easily 

extended to maintain a diverse set of solutions with 

the help of population mechanism [4], and are less 

susceptible to the shape or continuity of the Pareto 

front. During the past two decades, a considerable 

amount of multi-objective evolutionary algorithms 

have been presented to solve various types of MOPs 

[5-14]. However, evolutionary algorithms have their 

weakness in slow convergence and providing a 

precise enough solution because of the failure to 

exploit local information. During the last decades, a 

particular class of global-local search hybrids named 

“memetic algorithms” (MAs) are proposed. MAs are 

a class of stochastic heuristics for global 

optimization which combine the global search 

nature of EA with local refinement to improve 

individual solution. The motivation behind 

hybridization concept is usually to obtain better 

performing systems that exploit and unite 

advantages of the individual pure strategies, i.e., 

such hybrids are believed to benefit from synergy. 

Under the conceptual umbrella of MA, this paper 

developed a novel hybrid multi-objective 

optimization algorithm with the integration of the 

popular particle swarm optimization (PSO) and 

recently proposed extremal optimization (EO), 

called “PSO-EO”. The hybrid algorithm can 

combine the capability of PSO in search efficiency 
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with the advanced feature of EO in global search, 

and complement their individual weak points, thus 

outperform either one used alone. The effectiveness 

of the proposed PSO-EO algorithm is tested on five 

engineering design MOPs and three constrained 

benchmarks, and the comparison with some 

published results shows that the proposed approach 

is highly competitive in convergence and spread. 

That is precisely the aim of the study. 

The rest of the paper is organized as follows: The 

general problem formulation for MOPs is described 

in Section 2. Then, the fundamental and algorithms 

of PSO and EO are introduced briefly, and the 

hybrid PSO-EO oriented multi-objective 

optimization solution is presented in Section 3, and 

the simulation studies of proposed PSO-EO in 

engineering design are illustrated in Section 4. 

Finally, the concluding remarks are addressed in 

Section 5. 

 

 

2 Problem Formulation 
A multi-objective optimization problem with 

minimization as an example can be generally 

defined as follows [15]: 

Find the decision vector 
1 2[ , , , ]T

nx x x x    , 

which satisfies: 

 1 2( ) [ ( ), ( ), , ( )]

. . ( ) 1,2, , ( )

( ) 1,2, , ( )

T

k

i i

j j

Minimize f x f x f x f x

s t g x a i q inequality constrains

h x b j r equality constrains



 

 
 

For the above mentioned MOPs, there is rarely a 

single solution that simultaneously optimizes all the 

objective functions. People usually look for “trade-

offs”, rather than a single solution when dealing 

with MOPs. The notion of “optimality” is therefore, 

different. The most commonly adopted notion of 

optimality is called "Pareto optimality", some 

related concepts can then be defined: 

Definition 1 Pareto Optimality: A solution x   

is called “Pareto optimal point” if and only if for all 

x  and  1,2, ,I k , either ( ( ) ( ))i I i if x f x

   

or, there is at least one i I  such that ( ) ( )i if x f x . 

Definition 2 Pareto Dominance: A vector 

1[ , , ]ku u u  is said to dominate another vector 

1[ , , ]kv v v  (denoted by u v ) if and only if u  is 

partially less than v , i.e.
 

   1, , , i ii k u v i    
 

  1, , , i ik u v  . 

Definition 3 Pareto-optimal set: The Pareto optimal 

set *

sP is defined as the set of all Pareto optimal 

solutions, i.e.  * : ( ) ( )sP x y F y F x    . 

Definition 4 Pareto Front: For a given MOP ( )f x  

and Pareto optimal set *

sP , the Pareto front *

fP is 

defined as  * *

1: ( ) ( ( ), ( ))f k sP u f x f x f x x P    .
 

 

 

3 Hybrid PSO-EO Multi-objective 

Optimization 
In this section, the development of the proposed 

PSO-EO method is described in detail. First, the 

basic conception of PSO and EO is briefly 

introduced. Then the detailed issues of proposed 

hybrid multi-optimization algorithm including 

workflow, Selection mechanism of non-dominated 

sorting, Dynamic External Archive, Diversity 

Preservation, Constraints handling, etc, are 

discussed. 

 

 

3.1 Particle Swarm Optimization 
The Particle Swarm Optimization (PSO) proposed 

by Kennedy and Eberhart is inspired by the social 

behavior of animals [16], in which the solution is 

called “particles”. Each particle has a position 

Pos=( Pos
1
, Pos

2
,…) and a velocity Vel=(Vel

1
, 

Vel
2
,…) in the variable space. At each iteration, the 

velocity and the position are updated by: 

, 1 , 1 1 , , 2 2

, ,

, 1 , , 1

( )

( ) (1)

1, , (2)

i i i i

j gen j gen j gen j gen

i

j gen j gen

i i i

j gen j gen j gen

Vel wVel c R pBest Pos c R

gBest Pos

Pos Pos Vel j ChromLength



 

   



   



where w is the inertia weight of the particle, c1 

& c2 are two positive constants, R1 & R2 are 

random values in the range [0,1]. i is the index 

of a particle, and gen denotes the generation 

index, pBest and gBest are the personal best and 

the global best of the population, respectively.  
 

 

3.2 Extremal Optimization 
The Extremal Optimization (EO) proposed by 

Boettcher and Percus [17] is derived from the 

fundamentals of statistical physics and self-

organized criticality (SOC) [18] based on Bak-

Sneppen (BS) model which simulates far-from 

equilibrium dynamics in statistical physics and co-

evolution. SOC states that large interactive systems 

evolve to a state where a change in one single of 

their elements may lead to avalanches or domino 

effects that can reach any other element in the 

system. For an optimization problem with n decision 

variables, EO proceeds as follows [17]: 
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1. Initialize a configuration S  at will, set bestS S . 

2. For the current solution S . 

(a) Evaluate the fitness for each decision 

variable ix . 

(b) Rank all the components by their fitness and 

find the component with the “worst fitness”. 

(c) Choose one solution S   in the neighborhood 

of S , i.e., such that the worst component jx  

must change its state. 

(d) Accept S S  unconditionally. 

(e) If ( ) ( )bestF S F S , set bestS S . 

3. Repeat step-2 as long as desired. 

4. Return bestS  and ( )bestF S . 

Generally, EO is particularly applicable in 

dealing with large complex problems with rough 

landscape, phase transitions passing “easy-hard-

easy” boundaries or multiple local optima. It is less 

likely to be trapped in local minima than traditional 

gradient-based search algorithms. Benefited from its 

generality and ability to explore complicated 

configuration spaces efficiently, EO and its 

derivatives have been successfully applied in 

solving multi-objective combinatorial hard 

benchmarks and real-world optimization problems. 

 

 

3.3 Hybrid PSO-EO Multi-objective 

Optimization 
As mentioned above, mathematical programming 

techniques often fail in solving complex MOPs. On 

the contrary, many evolutionary-based optimization 

methods are good at global search, but relatively 

poor in fine-tuned local search. According to so-

called “No-Free-Lunch” Theorem, the performance 

of a search algorithm strongly depends on the 

quantity and quality of the problem knowledge it 

incorporates. This fact clearly underpins the 

exploitation of problem knowledge intrinsic to the 

hybrid metaheuristics. Under the framework of MAs, 

the global character of the search is given by the 

evolutionary nature of computational intelligence 

approaches while the local search is usually 

performed by means of constructive methods, 

intelligent local search heuristics or other search 

techniques.  

Moreover, since the natural link between hard 

optimization and statistical physics, the dynamic 

properties and computational complexity of the 

optimization have been attractive fundamental 

research topics in physics society within the past 

two decades. It has been recognized that one of the 

real complexities in optimization comes from the 

phase transition, e.g., “easy-hard-easy” search path. 

Phase transitions are found in many combinatorial 

optimization problems, and have been observed in 

the region of continuous parameter space containing 

the hardest instances. Unlike the Equilibrium 

approaches such as simulated annealing (SA), EO as 

a general-purpose method inspired by non-

equilibrium physical processes shows no sign of 

diminished performance near the critical point, 

which is deemed to be the origin of the hardest 

instances in terms of computational complexity. 

This opens a new door for development of high 

performance hybrid multi-objective optimization 

algorithm with the integration of PSO and EO. The 

proposed PSO-EO in this paper relies on the 

capability of PSO in search efficiency with the 

advanced feature of EO in global search. Fig.1 

shows the flowchart of the proposed algorithm. At 

first, the positions and velocities of all particles in 

the generation are randomly initialized, and the local 

best of each particle is set as the current position of 

itself. The archive is set to a null set. Then the 

evaluation of particle position includes the 

calculations of positions and the pair-wise 

comparisons of all particles to get the relationship of 

dominating. The algorithm terminates until the 

stopping conditions are satisfied. 

We will illustrate the fundamental and 

innovation of our method from four aspects: 

selection mechanism of non-dominated sorting, 

dynamic external archive, diversity preservation, 

constraints handling. 

 

3.3.1 Selection Mechanism of Non-dominated 

Sorting 

As known, obtaining a set of non-dominated 

solutions as closely as possible to the real Pareto 

front (Pf) and maintaining a well-distributed-

solution set along Pf are the two key principles in 

solving MOPs. To be efficient, we employ the non-

dominated sorting approach proposed by Fonseca 

and Fleming [19]. The approach selects the solutions 

in the better fronts, hence providing the necessary 

selection pressure to push the population towards Pf. 

All new positions of particles, which generated at 

each iteration, will be evaluated whether they 

dominate the current solutions by comparing their 

fitness values. 
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Fig.1, The pseudo-code of PSO-EO algorithm 

 

3.3.2 Dynamic External Archive 

To preserve good non-dominated solutions in the 

search process, a novel dynamic external archive 

(A
*
) is introduced. Characterized by dynamic, A

*
 

discriminates against the density estimation in 

NSGA-II [6] or the external archive in MOEO [20]. 

A
*
, which provides the elitist mechanism for PSO-

EO, consists of two main components as follows: 

 
Fig.2, Flow chart of EO Regulation 

Dynamic archiving logic: The logic is used to 

determine whether the newly founded solutions in 

the search process should be added to A
*
, and it 

works as follows: 

1) If some solutions of A
*
 are dominated by S

*
, all 

these dominated solutions are eliminated from 

A
*
 and S

*
 is added to A

*
.  

2) If there is at least one solution of A
*
 dominates 

S
*
, A

*
 does not need to be updated.  

3) If S
*
 and any solution of A

*
 do not dominate 

each other, S
*
 is added to A

*
. 

Regulation and Global Best selection: 

Accelerating the searching procedure is the main 

purpose of the regulation and selection. Here, a 

crowding distance metric was employed to judge 

whether the current solution locates in a lesser 

crowded region of the archive, as shown in Fig.2. 

 

3.3.3 Diversity Preservation 

For multi-objective optimization, there is strong 

desire to maintain a good spread of solutions 

besides convergence to the real Pareto front. In this 

paper, an adaptive lattice method is proposed for 

diversity preservation and well-distributed 

solutions of the archive. 

The workflow of the adaptive lattice is shown in 

Fig.3. At the beginning of each iteration, the PSO-

In current population, if there are N particles 

dominated by others. Select the ones which are 

far away from the current archive Pareto front, 

and then evolve the selected particles by EO. 

That is, for each of them (DP
*
): 

If Random_number ≤ EO_Probability 

1) Select a Non-dominated solution NS
*
 

from the archive by EO, according to the 

crowding metric in the archive, the lesser 

crowded region the NS
*
 locates, the more 

likely to be selected. 

2) Generate a mutation on one gene of NS
*
 

randomly to create a new particle (NP
*
).. 

3) Let the position of DP
*
 equal to NP

*
, 

while maintain the velocity of DP
*
 

unchanged.  

End 
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EO will check whether the archive needs to update, 

as mentioned before. If yes, the adaptive lattice 

takes effect; if no, go to step (1). For each objective 

dimension the PSO-EO will find the so-called 

“extreme solutions” with the maximum value of 

each objective dimensions (for instance, the circle 

points on the position 1 and 6 in Fig.3). Then 

generate a virtual Pareto front with several virtual 

points distributed uniformly (the diamond points on 

the position 1-6). Finally, if there is a solution with 

the shortest distance to the virtual Pareto front, add 

the solution into the archive. And then goes to the 

next iteration. 

1Objective

2
O

b
je

ct
iv

e

_Pareto front

1k

2k

3k

4k

5k
6k

1s

3s

2s

4s
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6s

1MaxGen

2MaxGen

3MaxGen

4MaxGen

5MaxGen

6MaxGen

Selected archive solutions

Eliminated archive solutions

Point yielded by lattice

Fig.3, Flow chart of the adaptive lattice method for 

diversity preservation.   :Generation k s MaxGen   

 

3.3.4 Constraints handling 

A simple scheme is applied to handle constraints 

[15]. For the comparison of two solutions, the PSO-

EO will check both their objective function values 

and their constraints. There are three cases: 

1) If both solutions are feasible, choose the one 

with better objective function value. 

2) If one solution is feasible and the other is 

infeasible, choose the feasible one. 

3) If both solutions are infeasible, choose the one 

with smaller overall constraint violations. 

 

 

4 Applications of Hybrid PSO-EO-

MO for Engineering Design 
In this section, the proposed PSO-EO is tested on 

five nonlinear engineering design problems and 

three benchmarks, which can be classified into the 

following categories:  

1) Group 1: including four bar truss design (“Four 

Bar”) [21], two bar truss design (“Two Bar”) 

and welded beam design (“Welded Beam”) 

proposed by Deb et al. [22] shown in Table 1. 

The three engineering problems in Group 1 all 

have continuous variables, two objectives and 

connected Pareto fronts. 

2) Group 2: including machine tool spindle design 

(Tool Spindle) [23], I-beam design (“I-Beam”) 

[24], as shown in Table 2.  

3) Group 3: including three benchmark test 

functions, i.e., TNK reported in [6], Hole [25], 

and WATER [26], as shown in Table 3. 

 

 

4.1  Performance Measures 
The performance index ‘Front Spread’ (FS) 

proposed by Bosman and Thierens is used to 

evaluate the performance of our approach. It 

indicates the size that covered by the non-

dominated solutions set (S) in the objective space. 

The FS is defined as the maximum Euclidean 

distance inside the smallest m-dimensional 

bounding-box that contains S [12]. It can be 

calculated as follows: 

0 1

1
0 1 2

( , )
0

( ) max ( ( ) ( ))
m

i i
z z S S

i

FS S f z f z


 


 


 

 

4.2  Experimental Settings 
The PSO-EO parameters on the test benchmarks 

are initially set up as follows: 

1) Population size: 50 candidate solutions and an 

external archive of size 100 are employed by 

PSO-EO to deal with all problems except 

WATER, which uses a population of size 80 at 

each iteration and an external archive of size 

200.  

2) Group 1: PSO-EO is applied to solve these 

problems and the simulation results are 

compared with MOEO, NSGA-II, SPEA2, 

PAES under the same conditions in Chen and 

Lu [20]. All approaches are run for a maximum 

of 40000, 30000, 40000 fitness function 

evaluations (FFE) on Four Bar, Two Bar and 

Welded Beam respectively, and have 50 

independent runs for each. It might also be 

noted that, PSO-EO only takes a maximum of 

15000 FFE on Four Bar. 

3) Group 2 & Group 3: For PSO-EO, 20000 FFE is 

adopted to all problems, and the same 

conditions as in Baykasoglu [27] are given on I-

Beam and Tool Spindle, and the same 

conditions as in Liu [26] are given on WATER. 
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4.3  Experimental Results and Discussion 

Group 1: 
Table 4 shows the experimental results 

comparisons of MOEO, NSGA-II, SPEA2, PAES 

and the proposed PSO-EO. 

As presented in Table 4, PSO-EO is able to find 

a wider distributed set of non-dominated solutions 

than other algorithms on problem Four Bar and 

Welded Beam, while a little inferior to SPEA2 on 

problem Two Bar. In all the three problems with 

PSO-EO, the standard deviation of FS metric in 50 

runs is also small, especially on Four Bar with less 

FFE, but a little worse than SPEA2 and NSGA-II 

on problem Two Bar and Welded Beam. 

Group 2: 

The published results of MOEO, NSGA-II, 

SPEA2, PAES and the proposed PSO-EO on 

problems in group 2 are listed in Table 5. The 

extreme solutions in two dimensions and FS are 

employed as the performance index to evaluate the 

above-mentioned algorithms. From the 

comparisons, we can see that the PSO-EO performs 

better for the first testing problem (“Tool Spindle” 

with discrete decision variables), both in terms of 

extreme solutions and FS. As for the second 

problem (“I-Beam”), the PSO-EO derives the best 

extreme solutions in terms of f2 , while the other 

indexes (extreme solutions in terms of f1 and FS) 

are a little inferior to GA, but still much better than 

other algorithms (MOTS, GA (Binary), Monte 

Carlo). Based on the comparisons, we can find the 

proposed PSO-EO is highly competitive to the 

state-of-the-art Methods on engineering design 

problems, especially for those with discrete 

variables and multiple disconnected Pareto fronts. 

The non-dominated solutions found by the 

proposed PSO-EO (“red pluses”) and the domains 

of existing feasible designs (“blue shaded area”) 

are shown in Fig.4. It is obvious that PSO-EO 

performs well in convergence to the blue area and 

in spread of non-dominated solutions on both 

problems, especially for Tool Spindle, which has 

multiple disconnected Pareto fronts. 

Group 3: 

In group 3, we used three typical benchmark 

problems, namely TNK, Hole and WATER, to 

further test the proposed hybrid PSO-EO. Both the 

TNK and Hole have real domains of feasible 

designs; while the TNK is non-convex, which 

makes the problem hard to be solved; for the 

problem Hole, we select the most tough case, in 

which the parameter h is set to 6 [25]. The 

simulation results of proposed PSO-EO and 

published methods on TNK and Hole are shown in 

Fig.5. 

The PSO-EO results in an excellent set of non-

dominated solutions for both problems in Group 3, 

as shown in Fig.5. It can be observed that PSO-EO 

performs well both in convergence and spread of 

solutions. This encourages the application of PSO-

EO to more complex MOPs which are pretty hard, 

disconnected, non-convex in real world. 

 

 

Table 4 Comparisons of FS metric in Group 1 (boldface is the best) 

Algorithm 
Four Bar Two Bar Welded Beam 

Mean St.Dev. Mean St.Dev. Mean St.Dev. 

PSO-EO 1648.52 0 91044.19 429.41 38.88 2.84 

MOEO [20] 1559.24 24.27 84758.66 4023.16 37.45 3.22 

NSGA-II [20] 1648.45 0.067 91515.14 104.13 33.62 1.89 

SPEA2 [20] 1648.52 7.4E-5 91548.70 84.46 33.81 1.52 

PAES [20] 1647.58 4.23 88045.80 3699.86 31.34 4.89 

Table 5 Comparisons of FS metric in Group 2 (boldface is the best) 

Algorithm 
I-Beam Tool Spindle 

1 2min ( ) min ( )f X f X FS  
1 2min ( ) min ( )f X f X FS  

PSO-EO (127.71, 0.06424)--(850.00, 0.00590)--722.29 (474653.67, 0.037186)--(1646089.55, 0.016613)--1171435.88 

MOTS [27] (143.52, 0.03700)--(678.21, 0.00664)--534.69 (497644.10, 0.037839)--(1485169.00, 0.016894) --987524.90 

GA (FP) [27] (127.46, 0.06034)--(850.00, 0.00590)--722.54 (1124409.37, 0.017951)--(1637052.38, 0.016615)--512643.01 

GA (Binary) [27] (128.27, 0.05241)--(848.41, 0.00591)--720.14 (494015.44, 0.038087)--(1643777.68, 0.016613)--1149762.24 

Monte Carlo[27] (188.65, 0.06175)--(555.22, 0.00849)--366.57 (606765.47, 0.032463)--(1457748.36, 0.019242)--850982.89 

Literature[27] (128.47, 0.06000)--(850.00, 0.00590)--721.53 (531183.70, 0.030215)--(694200.03, 0.023101)--163016.33 
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(a)                                                                                            (b) 

Fig.4, Non-dominated solutions on (a) I-Beam and (b) Tool Spindle with PSO-EO 

 
(a)                                                                                           (b) 

Fig.5, Non-dominated solutions on (a) TNK and (b) Hole with PSO-EO  

 

The WATER problem is chosen as a high 

dimensional benchmark with five objective 

functions, the comparison of the proposed PSO-EO 

and published results are listed in Table 6, with the 

range of the solutions in the archive. 

It is easy to find that PSO-EO can obtain 

broader boundary in terms of most objective 

functions. In other words, PSO-EO can explore 

wider searching region. 

In Fig.6, the non-dominated solutions evolved 

by PSO-EO are compared with that of DMOEA [26] 

under the same conditions (Upper diagonal plots 

are for PSO-EO and lower diagonal plots are for 

DMOEA. The ranges of all the objectives are 

shown in the diagonal boxes). The value of each 

objective function can be obtained by checking the 

corresponding diagonal boxes and their ranges. It 

can be observed that the solutions evolved by PSO-

EO generate a larger number of non-dominated 

points along the frontier, which means, a better 

convergence and spread of solutions. 

 

 

Table 6 Min and max value of non-dominated solutions of Water (boldface is the best) 

Algorithm f_1 f_2 f_3 f_4 f_5 

PSO-EO 0.798~0.956 0.027~0.900 0.095~0.951 0.029~1.531 9.028E-04~3.125 

DMOEA [26] 0.798~0.918 0.028~0.900 0.095~0.951 0.031~1.036 9.028E-04~3.124 

NSGA-II [26] 0.798~0.920 0.027~0.900 0.095~0.951 0.031~1.110 0.001~3.124 

Ray-Tai-Seow [26] 0.810~0.956 0.046~0.834 0.067~0.934 0.036~1.561 0.211~3.116 
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Fig.6, Non-dominated solutions obtained using PSO-EO and DMOEA for WATER 

 

As a general remark on the simulation results 

and comparisons above, PSO-EO outperforms 

other state-of-the-art methods in terms of 

convergence and spread of solutions. It should be 

noted that the factors contributing to the 

performance of the proposed PSO-EO method are 

the capability of PSO in search efficiency with the 

advanced feature of EO in global search. 

 

 

5 Conclusions and Future Works 
In this paper, a novel Hybrid PSO-EO algorithm is 

proposed to solve MOPs in engineering design, of 

which the traditional mathematical programming 

techniques will fail when the shape of the Pareto 

front is concave or disconnected. The hybrid 

method combines the superior functionalities of 

PSO for search efficency and extremal dynamics 

oriented EO for global search capability, which 

results in better convergence and well distributed 

sets of non-dominated solutions. Those advantages 

have been clearly demonstrated by the comparison 

with some state-of-the-art methods over several 

benchmark problems. 
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Table 3 Engineering design problems in Group 3. 
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